Crinoids

Sunday, July 30, 2017

There are only about 600 extant crinoid species, but they were much more abundant and diverse in the past. Some thick limestone beds dating to the mid- to late-Paleozoic are almost entirely made up of disarticulated crinoid fragments.

The enigmatic Echmatocrinus of the Burgess Shale, is the earliest known unequivocal crinoid groups date back to the Ordovician. There are two competing hypotheses pertaining to the origin of the group: the traditional viewpoint holds that crinoids evolved from within the blastozoans (the eocrinoids and their derived descendants the cystoids), whereas the most popular alternative suggests that the crinoids split early from among the edrioasteroids. The debate is difficult to settle, in part because all three candidate ancestors share many characteristics, including radial symmetry, calcareous plates, and stalked or direct attachment to the substrate.

Agaricocrinus americanus, crinoïde, carbonifère, Provenance: Indiana. Source: Alias Collections.

The crinoids underwent two periods of abrupt adaptive radiation; the first during the Ordovician, the other was during the early Triassic after they underwent a selective mass extinction at the end of the Permian period This Triassic radiation resulted in forms possessing flexible arms becoming widespread; motility, predominantly a response to predation pressure, also became far more prevalent. This radiation occurred somewhat earlier than the Mesozoic marine revolution, possibly because it was mainly prompted by increases in benthic predation, specifically of echinoids. After the end-Permian extinction, crinoids never regained the morphological diversity they enjoyed in the Paleozoic; they employed a different suite of the ecological strategies open to them from those that had proven so successful in the Paleozoic.

The long and varied geological history of the crinoids demonstrates how well the echinoderms have adapted to filter-feeding. The fossils of other stalked filter-feeding echinoderms, such as blastoids, are also found in rocks of the Palaeozoicera. These extinct groups can exceed the crinoids in both numbers and variety in certain strata. However, none of these others survived the crisis at the end of the Permian period.

Some fossil crinoids, such as Pentacrinites, seem to have lived attached to floating driftwood and complete colonies are often found. Sometimes this driftwood would become waterlogged and sink to the bottom, taking the attached crinoids with it. The stem of Pentacrinites can be several metres long. Modern relatives of Pentacrinites live in gentle currents attached to rocks by the end of their stem. The largest fossil crinoid on record had a stem 40 m (130 ft) in length.

In 2012, three geologists reported they had isolated complex organic molecules from 340-million-year-old (Mississippian) fossils of multiple species of crinoids. Identified as “resembl[ing …] aromatic or polyaromatic quinones”, these are the oldest molecules to be definitively associated with particular individual fossils, as they are believed to have been sealed inside ossicle pores by precipitated calcite during the fossilization process.

Source: www.Wikipedia.org, www.NatGeo.com