The Carboniferous Period

Saturday, November 19, 2016

The Carboniferous Period

The Carboniferous Period lasted from about 359.2 to 299 million years ago* during the late Paleozoic Era. The term “Carboniferous” comes from England, in reference to the rich deposits of coal that occur there. These deposits of coal occur throughout northern Europe, Asia, and midwestern and eastern North America. The term “Carboniferous” is used throughout the world to describe this period, although in the United States it has been separated into the Mississippian (early Carboniferous) and the Pennsylvanian (late Carboniferous) Subsystems. This division was established to distinguish the coal-bearing layers of the Pennsylvanian from the mostly limestone Mississippian, and is a result of differing stratigraphy on the different continents. The Mississippian and Pennsylvanian, in turn, are subdivided into a number of internationally recognized stages based on evolutionary successions of fossil groups . These stages are (from early to late) Tournaisian, Visean, and Serpukhovian for the Mississippian — and Bashkirian, Moscovian, Kasimovian, and Gzhelian for the Pennsylvanian.

In addition to having the ideal conditions for the formation of coal, several major biological, geological, and climatic events occurred during this time. Biologically, we see one of the greatest evolutionary innovations of the Carboniferous: the amniote egg, which allowed for the further exploitation of the land by certain tetrapods. It gave the ancestors of birds, mammals, and reptiles the ability to lay their eggs on land without fear of desiccation. Geologically, the Late Carboniferous collision of Laurasia (present-day Europe, Asia, and North America) into Gondwana (present-day Africa, South America, Antarctica, Australia, and India) produced the Appalachian Mountain belt of eastern North America and the Hercynian Mountains in the United Kingdom. A further collision of Siberia and eastern Europe created the Ural Mountains of Russia. And climatically, there was a trend towards mild temperatures during the Carboniferous, as evidenced by the decrease in lycopods and large insects, and an increase in the number of tree ferns.

An artist’s impression of a Carboniferous forest

The stratigraphy of the Mississippian can be easily distinguished from that of the Pennsylvanian. The Mississippian environment of North America was heavily marine, with seas covering parts of the continent. As a result, most Mississippian rocks are limestone, which are composed of the remains of crinoids, lime-encrusted green algae, or calcium carbonate shaped by waves. The North American Pennsylvanian environment was alternately terrestrial and marine, with the transgression and regression of the seas caused by glaciation. These environmental conditions, with the vast amount of plant material provided by the extensive coal forests, allowed for the formation of coal. Plant material did not decay when the seas covered them, and pressure and heat eventually built up over millions of years to transform the plant material to coal.


The beginning of the Carboniferous generally had a more uniform, tropical, and humid climate than exists today. Seasons if any were indistinct. These observations are based on comparisons between fossil and modern-day plant morphology. The Carboniferous plants resemble those that live in tropical and mildly temperate areas today. Many of them lack growth rings, which suggests a uniform climate. This uniformity in climate may have been the result of the large expanse of ocean that covered the entire surface of the globe, except for a localized section where Pangea, the massive supercontinent that existed during the late Paleozoic and early Triassic, was coming together.

Shallow, warm, marine waters often flooded the continents. Attached filter feeders such as bryozoans, particularly fenestellids, were abundant in this environment, and the sea floor was dominated by brachiopods. Trilobites were increasingly scarce while foraminifers were abundant. The heavily armored fish from the Devonian became extinct, being replaced with more modern-looking fish fauna.

Though many spectacular plant forms dominated the Carboniferous, most of them disappeared before the end of the Paleozoic. On the left, Neuropteris, a leaf form associated with the cycad-like seed-ferns.

Uplifting near the end of the Mississippian resulted in increased erosion, with an increase in the number of floodplains and deltas. The deltaic environment supported fewer corals, crinoids, blastoids, cryozoans, and bryzoans, which were abundant earlier in the Carboniferous. Freshwater clams made their first appearance, and there was an increase in gastropod, bony fish, and shark diversity. As the continents moved closer to forming Pangea, there was a net decrease in coastline, which in turn affected the diversity of marine life in those shallow continental waters.

Two large ice sheets at the southern pole locked up large amounts of water as ice. With so much water taken out of the water cycle, sea levels dropped, leading to an increase in terrestrial habitat. Increases and decreases in glaciation during the Pennsylvanian resulted in sea level fluctuations that can be seen in the rocks as striped patterns of alternating shale and coal layers.


The appearance or disappearance of fauna usually marks the boundaries between time periods. The Carboniferous is separated from the earlier Devonian by the appearance of the conodont Siphonodella sulcata or Siphondella duplicata. Conodonts are fossils that resemble the teeth or jaws of primitive eel- or hagfish-like fish. The Carboniferous-Permian boundary is distinguished by the appearance of the fusulinid foram Sphaeroschwagerina fusiformis in Europe and Pseudoschwagerina beedei in North America. Fusulinids are giants among protists and could reach a centimeter in length. They were abundant enough to form sizable deposits known as “rice rock” because of the resemblance between fusulinids and rice grains.

The Mississippian Subsystem is differentiated from the Pennsylvanian by the appearance of the conodont Declinognathodus noduliferus, the ammonoid genus Homoceras, and the foraminifers Millerella pressa and Millerella marblensis, though these markers apply only to marine deposits. The distinction between the Mississippian and Pennsylvanian subsystems may also be illustrated by a break in the flora due to transitional changes from a marine to a more terrestrial environment.

The stratigraphy of the Mississippian is distinguished by shallow-water limestones. Some of these limestones are composed of parts of organisms, primarily the remains of crinoids that thrived in the shallow seas. Other limestones include lime mudstones, composed of the carbonate mud produced by green algae, and oolithic limestones, composed of calcium carbonate in concentric spheres produced by high wave energy. Also found in Mississippian strata, though not as common, are sandstones (sedimentary rock composed of quartz sand and cemented by silica or calcium carbonate) and siltstones (rock composed of hardened silt).

Coal beds, which can be up to 11 to 12 meters thick, characterize the late Carboniferous. The forests of seedless vascular plants that existed in the tropical swamp forests of Europe and North America provided the organic material that became coal. Dead plants did not completely decay and were turned to peat in these swamp forests. When the sea covered the swamps, marine sediments covered the peat. Eventually, heat and pressure transformed these organic remains into coal. Coal balls, pockets of plant debris that were preserved as fossils and not converted to coal, are sometimes found within the coal layers.

Multiple transgressions and regressions of the Pennsylvanian seas across the continent can be seen in the rocks, and even counted, because they leave a telltale sequence of layers. As sea levels rise, the layers may go from sandstone (beach), to silty shale or siltstone (tidal), to freshwater limestone (lagoon), to underclay (terrestrial), to coal (terrestrial swampy forest). Then as sea levels fall, one may see a shale (nearshore tidal) grade to limestone (shallow marine) and finally to black shale (deep marine).

Index fossils are the remains of plants and animals that characterize a well-defined time span and occur over a wide range of geography. Fossils of marine life characterize the Mississippian, as shallow epicontinental seas covered the United States at that time. These fossils include solitary corals and Syringopora, tubular colonial corals. Other fossil colonial corals include Stelechophyllum and Siphonodendron. Because conodont fossils are distributed all over the world, they are utilized internationally to date Mississippian rocks.

Index fossils used for the Pennsylvanian Subsystem are fusulinid foraminifers and the pollen and spores from the coal forests prevalent during that time. The Mississippian-Pennsylvanian boundary is marked by the appearance of the fusulinid Pseudostaffella antiqua. Other fossils used to identify the early Pennsylvanian are the three ammonoid cephalopod genera GastriocerasDaiboloceras, and Paralegoceras, all found in marine deposits.


Joggins, Nova Scotia: This Pennsylvanian UNESCO World Heritage Site was home to early tetrapods such as Dendrerpeton.

Mazon Creek, Illinois: This site has become famous for its iron concretions preserving both plants and marine invertebrates.

Snowball Earth

Saturday, November 19, 2016

The Snowball Earth hypothesis proposes that Earth’s surface became entirely or nearly entirely frozen at least once, sometime earlier than 650 Mya (million years ago). Proponents of the hypothesis argue that it best explains sedimentary deposits generally regarded as of glacial origin at tropical paleolatitudes, and other otherwise enigmatic features in the geological record. Opponents of the hypothesis contest the implications of the geological evidence for global glaciation, the geophysical feasibility of an ice- or slush-covered ocean, and the difficulty of escaping an all-frozen condition. A number of unanswered questions exist, including whether Earth was a full snowball, or a “slushball” with a thin equatorial band of open (or seasonally open) water.

The snowball Earth episodes occurred before the sudden radiation of multicellular bioforms, known as the Cambrian explosion. The most recent snowball episode may have triggered the evolution of multicellularity. Another, much earlier and longer snowball episode, the Huronian glaciation, which occurred 2400 to 2100 Mya, may have been triggered by the first appearance of oxygen in the atmosphere, the “Great Oxygenation Event.”


The snowball Earth hypothesis was originally devised to explain geological evidence for the apparent presence of glaciers at tropical latitudes. According to modelling, an ice-albedo feedback would result in glacial ice rapidly advancing to the equator once the glaciers spread to within 25° to 30° of the equator. Therefore, the presence of glacial deposits within the tropics suggests global ice cover.

Critical to an assessment of the validity of the theory, therefore, is an understanding of the reliability and significance of the evidence that led to the belief that ice ever reached the tropics. This evidence must prove two things:

  1. that a bed contains sedimentary structures that could have been created only by glacial activity;
  2. that the bed lay within the tropics when it was deposited.

During a period of global glaciation, it must also be demonstrated that glaciers were active at different global locations at the same time, and that no other deposits of the same age are in existence.

This last point is very difficult to prove. Before the Ediacaran, the biostratigraphic markers usually used to correlate rocks are absent; therefore there is no way to prove that rocks in different places across the globe were deposited at precisely the same time. The best that can be done is to estimate the age of the rocks using radiometric methods, which are rarely accurate to better than a million years or so.

The first two points are often the source of contention on a case-to-case basis. Many glacial features can also be created by non-glacial means, and estimating the approximate latitudes of landmasses even as recently as 200 million years ago can be riddled with difficulties.


The snowball Earth hypothesis was first posited to explain what were then considered to be glacial deposits near the equator. Since tectonic plates move slowly over time, ascertaining their position at a given point in Earth’s long history is not easy. In addition to considerations of how the recognizable landmasses could have fit together, the latitude at which a rock was deposited can be constrained by palaeomagnetism.

When sedimentary rocks form, magnetic minerals within them tend to align themselves with the Earth’s magnetic field. Through the precise measurement of this palaeomagnetism, it is possible to estimate the latitude (but not the longitude) where the rock matrix was formed. Palaeomagnetic measurements have indicated that some sediments of glacial origin in the Neoproterozoic rock record were deposited within 10 degrees of the equator, although the accuracy of this reconstruction is in question. This palaeomagnetic location of apparently glacial sediments (such as dropstones) has been taken to suggest that glaciers extended from land to sea level in tropical latitudes at the time the sediments were deposited. It is not clear whether this implies a global glaciation, or the existence of localized, possibly land-locked, glacial regimes. Others have even suggested that most data do not constrain any glacial deposits to within 25° of the equator.

Low-latitude glacial deposits

Sedimentary rocks that are deposited by glaciers have distinctive features that enable their identification. Long before the advent of the snowball Earth hypothesis many Neoproterozoic sediments had been interpreted as having a glacial origin, including some apparently at tropical latitudes at the time of their deposition. However, it is worth remembering that many sedimentary features traditionally associated with glaciers can also be formed by other means. Thus the glacial origin of many of the key occurrences for snowball Earth has been contested. As of 2007, there was only one “very reliable” – still challenged – datum point identifying tropical tillites, which makes statements of equatorial ice cover somewhat presumptuous. However evidence of sea-level glaciation in the tropics during the Sturtian is accumulating. Evidence of possible glacial origin of sediment includes:

  • Dropstones (stones dropped into marine sediments), which can be deposited by glaciers or other phenomena.
  • Varves (annual sediment layers in periglacial lakes), which can form at higher temperatures.
  • Glacial striations (formed by embedded rocks scraped against bedrock): similar striations are from time to time formed by mudflows or tectonic movements.
  • Diamictites (poorly sorted conglomerates). Originally described as glacial till, most were in fact formed by debris flows.

Open-water deposits

It appears that some deposits formed during the snowball period could only have formed in the presence of an active hydrological cycle. Bands of glacial deposits up to 5,500 meters thick, separated by small (meters) bands of non-glacial sediments, demonstrate that glaciers melted and re-formed repeatedly for tens of millions of years; solid oceans would not permit this scale of deposition. It is considered possible that ice streams such as seen in Antarctica today could have caused these sequences. Further, sedimentary features that could only form in open water (for example: wave-formed ripples, far-traveled ice-rafted debris and indicators of photosynthetic activity) can be found throughout sediments dating from the snowball-Earth periods. While these may represent “oases” of meltwater on a completely frozen Earth, computer modelling suggests that large areas of the ocean must have remained ice-free; arguing that a “hard” snowball is not plausible in terms of energy balance and general circulation models.

Carbon isotope ratios

There are two stable isotopes of carbon in sea water: carbon-12 (12C) and the rare carbon-13 (13C), which makes up about 1.109 percent of carbon atoms.

Biochemical processes, of which photosynthesis is one, tend to preferentially incorporate the lighter 12C isotope. Thus ocean-dwelling photosynthesizers, both protists and algae, tend to be very slightly depleted in 13C, relative to the abundance found in the primary volcanic sources of Earth’s carbon. Therefore, an ocean with photosynthetic life will have a lower 13C/12C ratio within organic remains, and a higher ratio in corresponding ocean water. The organic component of the lithified sediments will forever remain very slightly, but measurably, depleted in 13C.

During the proposed episode of snowball Earth, there are rapid and extreme negative excursions in the ratio of 13C to 12C. This is consistent with a deep freeze that killed off most or nearly all photosynthetic life – although other mechanisms, such as clathrat release, can also cause such perturbations. Close analysis of the timing of 13C ‘spikes’ in deposits across the globe allows the recognition of four, possibly five, glacial events in the late Neoproterozoic.

Banded iron formations

Banded iron formations (BIF) are sedimentary rocks of layered iron oxide and iron-poor chert. In the presence of oxygen, iron naturally rusts and becomes insoluble in water. The banded iron formations are commonly very old and their deposition is often related to the oxidation of the Earth’s atmosphere during the Palaeoproterozoic era, when dissolved iron in the ocean came in contact with photosynthetically produced oxygen and precipitated out as iron oxide.

The bands were produced at the tipping point between an anoxic and an oxygenated ocean. Since today’s atmosphere is oxygen-rich (nearly 21% by volume) and in contact with the oceans, it is not possible to accumulate enough iron oxide to deposit a banded formation. The only extensive iron formations that were deposited after the Palaeoproterozoic (after 1.8 billion years ago) are associated with Cryogenian glacial deposits.

Changing acidity

Isotopes of the element boron suggest that the pH of the oceans dropped dramatically before and after the Marinoan glaciation. This may indicate a buildup of carbon dioxide in the atmosphere, some of which would dissolve into the oceans to form carbonic acid. Although the boron variations may be evidence of extreme climate change, they need not imply a global glaciation.

Space dust

Earth’s surface is very depleted in the element iridium, which primarily resides in the Earth’s core. The only significant source of the element at the surface is cosmic particles that reach Earth. During a snowball Earth, iridium would accumulate on the ice sheets, and when the ice melted the resulting layer of sediment would be rich in iridium. An iridium anomaly has been discovered at the base of the cap carbonate formations, and has been used to suggest that the glacial episode lasted for at least 3 million years, but this does not necessarily imply a global extent to the glaciation; indeed, a similar anomaly could be explained by the impact of a large meteorite.

Cyclic climate fluctuations

Using the ratio of mobile cations to those that remain in soils during chemical weathering (the chemical index of alteration), it has been shown that chemical weathering varied in a cyclic fashion within a glacial succession, increasing during interglacial periods and decreasing during cold and arid glacial periods. This pattern, if a true reflection of events, suggests that the “snowball Earths” bore a stronger resemblance to Pleistocene ice age cycles than to a completely frozen Earth.


A snowball Earth has profound implications in the history of life on Earth. While many refugia have been postulated, global ice cover would certainly have ravaged ecosystems dependent on sunlight. Geochemical evidence from rocks associated with low-latitude glacial deposits have been interpreted to show a crash in oceanic life during the glacials.

The melting of the ice may have presented many new opportunities for diversification, and may indeed have driven the rapid evolution which took place at the end of the Cryogenian period.

Flood Basalt Eruptions

Saturday, November 19, 2016

 Flood Basalt Eruptions

flood basalt is the result of a giant volcanic eruption or series of eruptions that coats large stretches of land or the ocean floor with basalt lava. Flood basalt provinces such as the Deccan Traps of India are often called traps, which derives from the characteristic stairstep geomorphology of many associated landscapes. Rampino and Stothers (1988) cite eleven distinct flood basalt episodes occurring in the past 250 million years, creating large volcanic provinces, plateaus, and mountain ranges. However, more have been recognized such as the large Ontong Java Plateau, and the Chilcotin Group, though the latter may be linked to the Columbia River Basalt Group. Large igneous provinces have been connected to five mass extinction events, and may be associated with bolide impacts.



Prehistoric Earth. Computer artwork showing how the surface of the Earth may have appeared beneath its clouds about 500 million years after its birth, during a period known as the Hadean eon. Massive volcanoes and lava fields still dominate the landscape. In a few million years rain will begin falling, further cooling the crust. In about another 200 million years the first living microbes will call the Earth home.

The formation and effects of a flood basalt depend on a range of factors, such as continental configuration, latitude, volume, rate, duration of eruption, style and setting (continental vs. oceanic), the preexisting climate state, and the biota resilience to change.

One proposed explanation for flood basalts is that they are caused by the combination of continental rifting and its associated decompression melting, in conjunction with a mantle plume also undergoing decompression melting, producing vast quantities of a tholeiitic basaltic magma. These have a very low viscosity, which is why they ‘flood’ rather than form taller volcanoes. Another explanation is that they result from the release, over a short time period, of melt that has accumulated in the mantle over a long time period.

The Deccan Traps of central India, the Siberian Traps, and the Columbia River Plateau of western North America are three regions covered by prehistoric flood basalts. The Mesoproterozoic Mackenzie Large Igneous Province in Canada contains the Coppermine River flood basalts related to the Muskox layered intrusion. The maria on the Moon are additional, even more extensive, flood basalts. Flood basalts on the ocean floor produce oceanic plateaus.

The surface covered by one eruption can vary from around 200,000 km² (Karoo) to 1,500,000 km² (Siberian Traps). The thickness can vary from 2000 metres (Deccan Traps) to 12,000 m (Lake Superior). These are smaller than the original volumes due to erosion.


Flood basalts have tholeiite and olivine compositions (according to the classification of Yoder and Tilley). The composition of the basalts from the Paraná is fairly typical of that of flood basalts; it contains phenocrysts occupying around 25% of the volume of rock in a fine-grained matrix. These phenocrysts are pyroxenes (augite and pigeonite), plagioclases, opaque crystals such as titanium rich magnetite or ilmenite, and occasionally some olivine. Sometimes more differentiated volcanic products such as andesites, dacites and rhyodacites have been observed, but only in small quantities at the top of former magma chambers.

Moses Coulee in the US showing multiple flood basalt flows of the Columbia River Basalt Group. The upper basalt is Roza Member, while the lower canyon exposes Frenchmen Springs Member basalt



Subaerial flood basalts can be of two kinds:

  • with a smooth or twisted surface : very compact surface; vesicles (gas bubbles) are rare. Degassing was easy (magma maintained at a high temperature and more fluid in a chamber of a size such that confining pressures did not confine gases to the melt before expulsion). Such lava flows may form underground rivers; when degassing fractures and conduits are present, very large flows may reach the surface.
  • with a chaotic surface : the basalt flood is very rich in bubbles of gas, with an irregular, fragmental surface. Degassing was difficult (less fluid magma expelled from a rift with no chance of progressive expansion in a hot chamber; the degassing took place closer to the surface where the flow forms a crust which cracks under the pressure of the gases in the flow itself and during more rapid cooling).

In the Massif Central in Auvergne, France, there is a good example of chaotic lava flow, produced by eruptions from Puy de la Vache and Puy de Lassolas.


Geochemical analysis of the major oxides reveals a composition close to that of mid-ocean ridge basalts (MORB) but also close to that of ocean island basalts (OIB). These are in fact tholeiites with a silicon dioxide percentage close to 50%.

Two kinds of basaltic flood basalts can be distinguished:

  • those poor in P2O5 and in TiO2, called low phosphorus and titanium
  • those rich in P2O5 and in TiO2, called high phosphorus and titanium

The isotopic ratios 87Sr/86Sr and 206Pb/204Pb are different from that observed in general, which shows that the basalt flood magma was contaminated as it passed through the continental crust. It is this contamination that explains the difference between the two kinds of basalt mentioned above. The low phosphorus and titanium type has an excess of elements from the crust such as potassium and strontium.

The content in incompatible elements of flood basalts is lower than that of ocean island basalts, but higher than that of mid-ocean ridge basalts.

Other occurrences

Basalt floods on the planet Venus are larger than those on Earth.

Source: BBC Earth

Origin and Evolution of Life on Earth

Saturday, November 19, 2016

The evolutionary history of life on Earth traces the processes by which living and fossil organisms have evolved since life appeared on the planet, until the present day. Earth formed about 4.5 billion years (Ga) ago and there is evidence that life appeared as early as 4.1 Ga.

Breakup of the Earth’s Land Masses

Like the lapis lazuli gem it resembles, the blue, cloud-enveloped planet the we recognize immediately from satellite pictures seems remarkably stable. Continents and oceans, encircled by an oxygen-rich atmosphere, support familiar life-forms. Yet this constancy is an illusion produced by the human experience of time. Earth and its atmosphere are continuously altered. Plate tectonics shift the continents, raise mountains and move the ocean floor while processes not fully understood alter the climate.

Such constant change has characterized Earth since its beginning some 4.5 billion years ago. From the outset, heat and gravity shaped the evolution of the planet. These forces were gradually joined by the global effects of the emergence of life. Exploring this past offers us the only possibility of understanding the origin of life and, perhaps, its future.

Scientists used to believe the rocky planets, including Earth, Mercury, Venus and Mars, were created by the rapid gravitational collapse of a dust cloud, a deation giving rise to a dense orb. In the 1960s the Apollo space program changed this view. Studies of moon craters revealed that these gouges were caused by the impact of objects that were in great abundance about 4.5 billion years ago. Thereafter, the number of impacts appeared to have quickly decreased. This observation rejuvenated the theory of accretion postulated by Otto Schmidt. The Russian geophysicist had suggested in 1944 that planets grew in size gradually, step by step.

According to Schmidt, cosmic dust lumped together to form particulates, particulates became gravel, gravel became small balls, then big balls, then tiny planets, or planetesimals, and, nally, dust became the size of the moon. As the planetesimals became larger, their numbers decreased. Consequently, the number of collisions between planetesimals, or meteorites, decreased. Fewer items available for accretion meant that it took a long time to build up a large planet. A calculation made by George W. Wetherill of the Carnegie Institution of Washington suggests that about 100 million years could pass between the formation of an object measuring 10 kilometers in diameter and an object the size of Earth.

The process of accretion had significant thermal consequences for Earth, consequences that forcefully directed its evolution. Large bodies slamming into the planet produced immense heat in its interior, melting the cosmic dust found there. The resulting furnace–situated some 200 to 400 kilometers underground and called a magma ocean–was active for millions of years, giving rise to volcanic eruptions. When Earth was young, heat at the surface caused by volcanism and lava ows from the interior was intensified by the constant bombardment of huge objects, some of them perhaps the size of the moon or even Mars. No life was possible during this period.

Beyond clarifying that Earth had formed through accretion, the Apollo program compelled scientists to try to reconstruct the subsequent temporal and physical development of the early Earth. This undertaking had been considered impossible by founders of geology, including Charles Lyell, to whom the following phrase is attributed: No vestige of a beginning, no prospect for an end. This statement conveys the idea that the young Earth could not be re-created, because its remnants were destroyed by its very activity. But the development of isotope geology in the 1960s had rendered this view obsolete. Their imaginations red by Apollo and the moon ndings, geochemists began to apply this technique to understand the evolution of Earth.

Dating rocks using so-called radioactive clocks allows geologists to work on old terrains that do not contain fossils. The hands of a radioactive clock are isotopes–atoms of the same element that have different atomic weights–and geologic time is measured by the rate of decay of one isotope into another [see “The Earliest History of the Earth,” by Derek York; Scientific American, January 1993]. Among the many clocks, those based on the decay of uranium 238 into lead 206 and of uranium 235 into lead 207 are special. Geochronologists can determine the age of samples by analyzing only the daughter product–in this case, lead–of the radioactive parent, uranium.

Panning for zircons

ISOTOPE GEOLOGY has permitted geologists to determine that the accretion of Earth culminated in the differentiation of the planet: the creation of the core–the source of Earth’s magnetic field–and the beginning of the atmosphere. In 1953 the classic work of Claire C. Patterson of the California Institute of Technology used the uranium-lead clock to establish an age of 4.55 billion years for Earth and many of the meteorites that formed it. In the early 1990s, however, work by one of us (Allègre) on lead isotopes led to a somewhat new interpretation.

As Patterson argued, some meteorites were indeed formed about 4.56 billion years ago, and their debris constituted Earth. But Earth continued to grow through the bombardment of planetesimals until some 120 million to 150 million years later. At that time–4.44 billion to 4.41 billion years ago–Earth began to retain its atmosphere and create its core. This possibility had already been suggested by Bruce R. Doe and Robert E. Zartman of the U.S. Geological Survey in Denver two decades ago and is in agreement with Wetherills estimates.

The emergence of the continents came somewhat later. According to the theory of plate tectonics, these landmasses are the only part of Earth’s crust that is not recycled and, consequently, destroyed during the geothermal cycle driven by the convection in the mantle. Continents thus provide a form of memory because the record of early life can be read in their rocks. Geologic activity, however, including plate tectonics, erosion and metamorphism, has destroyed almost all the ancient rocks. Very few fragments have survived this geologic machine.

Nevertheless, in recent decades, several important nds have been made, again using isotope geochemistry. One group, led by Stephen Moorbath of the University of Oxford, discovered terrain in West Greenland that is between 3.7 billion and 3.8 billion years old. In addition, Samuel A. Bowring of the Massachusetts Institute of Technology explored a small area in North America–the Acasta gneiss–that is thought to be 3.96 billion years old.

Ultimately, a quest for the mineral zircon led other researchers to even more ancient terrain. Typically found in continental rocks, zircon is not dissolved during the process of erosion but is deposited in particle form in sediment. A few pieces of zircon can therefore survive for billions of years and can serve as a witness to Earths more ancient crust. The search for old zircons started in Paris with the work of Annie Vitrac and Jol R. Lancelot, later at the University of Marseille and now at the University of Nmes, respectively, as well as with the efforts of Moorbath and Allgre. It was a group at the Australian National University in Canberra, directed by William Compston, that was nally successful. The team discovered zircons in western Australia that were between 4.1 billion and 4.3 billion years old.

Zircons have been crucial not only for understanding the age of the continents but for determining when life rst appeared. The earliest fossils of undisputed age were found in Australia and South Africa. These relics of blue-green algae are about 3.5 billion years old. Manfred Schidlowski of the Max Planck Institute for Chemistry in Mainz studied the Isua formation in West Greenland and argued that organic matter existed as long ago as 3.8 billion years. Because most of the record of early life has been destroyed by geologic activity, we cannot say exactly when it rst appeared–perhaps it arose very quickly, maybe even 4.2 billion years ago.

Stories from gases

ONE OF THE MOST important aspects of the planet’s evolution is the formation of the atmosphere, because it is this assemblage of gases that allowed life to crawl out of the oceans and to be sustained. Researchers have hypothesized since the 1950s that the terrestrial atmosphere was created by gases emerging from the interior of the planet. When a volcano spews gases, it is an example of the continuous outgassing, as it is called, of Earth. But scientists have questioned whether this process occurred suddenly–about 4.4 billion years ago when the core differentiated–or whether it took place gradually over time.
To answer this question, Allègre and his colleagues studied the isotopes of rare gases. These gases–including helium, argon and xenon–have the peculiarity of being chemically inert, that is, they do not react in nature with other elements. Two of them are particularly important for atmospheric studies: argon and xenon. Argon has three isotopes, of which argon 40 is created by the decay of potassium 40. Xenon has nine, of which xenon 129 has two different origins. Xenon 129 arose as the result of nucleosynthesis before Earth and solar system were formed. It was also created from the decay of radioactive iodine 129, which does not exist on Earth anymore. This form of iodine was present very early on but has died out since, and xenon 129 has grown at its expense.

Like most couples, both argon 40 and potassium 40 and xenon 129 and iodine 129 have stories to tell. They are excellent chronometers. Although the atmosphere was formed by the outgassing of the mantle, it does not contain any potassium 40 or iodine 129. All argon 40 and xenon 129, formed in Earth and released, are found in the atmosphere today. Xenon was expelled from the mantle and retained in the atmosphere; therefore, the atmosphere-mantle ratio of this element allows us to evaluate the age of differentiation. Argon and xenon trapped in the mantle evolved by the radioactive decay of potassium 40 and iodine 129. Thus, if the total outgassing of the mantle occurred at the beginning of Earths formation, the atmosphere would not contain any argon 40 but would contain xenon 129.

The major challenge facing an investigator who wants to measure such ratios of decay is to obtain high concentrations of rare gases in mantle rocks because they are extremely limited. Fortunately, a natural phenomenon occurs at mid-ocean ridges during which volcanic lava transfers some silicates from the mantle to the surface. The small amounts of gases trapped in mantle minerals rise with the melt to the surface and are concentrated in small vesicles in the outer glassy margin of lava ows. This process serves to concentrate the amounts of mantle gases by a factor of 104 or 105. Collecting these rocks by dredging the seaoor and then crushing them under vacuum in a sensitive mass spectrometer allows geochemists to determine the ratios of the isotopes in the mantle. The results are quite surprising. Calculations of the ratios indicate that between 80 and 85 percent of the atmosphere was outgassed during Earths rst one million years; the rest was released slowly but constantly during the next 4.4 billion years.

The composition of this primitive atmosphere was most certainly dominated by carbon dioxide, with nitrogen as the second most abundant gas. Trace amounts of methane, ammonia, sulfur dioxide and hydrochloric acid were also present, but there was no oxygen. Except for the presence of abundant water, the atmosphere was similar to that of Venus or Mars. The details of the evolution of the original atmosphere are debated, particularly because we do not know how strong the sun was at that time. Some facts, however, are not disputed. It is evident that carbon dioxide played a crucial role. In addition, many scientists believe the evolving atmosphere contained sufficient quantities of gases such as ammonia and methane to give rise to organic matter.

Still, the problem of the sun remains unresolved. One hypothesis holds that during the Archean eon, which lasted from about 4.5 billion to 2.5 billion years ago, the suns power was only 75 percent of what it is today. This possibility raises a dilemma: How could life have survived in the relatively cold climate that should accompany a weaker sun? A solution to the faint early sun paradox, as it is called, was offered by Carl Sagan and George Mullen of Cornell University in 1970. The two scientists suggested that methane and ammonia, which are very effective at trapping infrared radiation, were quite abundant. These gases could have created a super-greenhouse effect. The idea was criticized on the basis that such gases were highly reactive and have short lifetimes in the atmosphere.

What controlled co?

IN THE LATE 1970s Veerabhadran Ramanathan, now at the Scripps Institution of Oceanography, and Robert D. Cess and Tobias Owen of Stony Brook University proposed another solution. They postulated that there was no need for methane in the early atmosphere because carbon dioxide was abundant enough to bring about the super-greenhouse effect. Again this argument raised a different question: How much carbon dioxide was there in the early atmosphere? Terrestrial carbon dioxide is now buried in carbonate rocks, such as limestone, although it is not clear when it became trapped there. Today calcium carbonate is created primarily during biological activity; in the Archean eon, carbon may have been primarily removed during inorganic reactions.

The rapid outgassing of the planet liberated voluminous quantities of water from the mantle, creating the oceans and the hydrologic cycle. The acids that were probably present in the atmosphere eroded rocks, forming carbonate-rich rocks. The relative importance of such a mechanism is, however, debated. Heinrich D. Holland of Harvard University believes the amount of carbon dioxide in the atmosphere rapidly decreased during the Archean and stayed at a low level.

Understanding the carbon dioxide content of the early atmosphere is pivotal to understanding climatic control. Two conicting camps have put forth ideas on how this process works. The rst group holds that global temperatures and carbon dioxide were controlled by inorganic geochemical feedbacks; the second asserts that they were controlled by biological removal.

James C. G. Walker, James F. Kasting and Paul B. Hays, then at the University of Michigan at Ann Arbor, proposed the inorganic model in 1981. They postulated that levels of the gas were high at the outset of the Archean and did not fall precipitously. The trio suggested that as the climate warmed, more water evaporated, and the hydrologic cycle became more vigorous, increasing precipitation and runoff. The carbon dioxide in the atmosphere mixed with rainwater to create carbonic acid runoff, exposing minerals at the surface to weathering. Silicate minerals combined with carbon that had been in the atmosphere, sequestering it in sedimentary rocks. Less carbon dioxide in the atmosphere meant, in turn, less of a greenhouse effect. The inorganic negative feedback process offset the increase in solar energy.

This solution contrasts with a second paradigm: biological removal. One theory advanced by James E. Lovelock, an originator of the Gaia hypothesis, assumed that photosynthesizing microorganisms, such as phytoplankton, would be very productive in a high carbon dioxide environment. These creatures slowly removed carbon dioxide from the air and oceans, converting it into calcium carbonate sediments. Critics retorted that phytoplankton had not even evolved for most of the time that Earth has had life. (The Gaia hypothesis holds that life on Earth has the capacity to regulate temperature and the composition of Earth’s surface and to keep it comfortable for living organisms.)

In the early 1990s Tyler Volk of New York University and David W. Schwartzman of Howard University proposed another Gaian solution. They noted that bacteria increase carbon dioxide content in soils by breaking down organic matter and by generating humic acids. Both activities accelerate weathering, removing carbon dioxide from the atmosphere. On this point, however, the controversy becomes acute. Some geochemists, including Kasting, now at Pennsylvania State University, and Holland, postulate that while life may account for some carbon dioxide removal after the Archean, inorganic geochemical processes can explain most of the sequestering. These researchers view life as a rather weak climatic stabilizing mechanism for the bulk of geologic time.

Oxygen from algae

THE ISSUE OF CARBON remains critical to how life inuenced the atmosphere. Carbon burial is a key to the vital process of building up atmospheric oxygen concentrations–a prerequisite for the development of certain life-forms. In addition, global warming is taking place now as a result of humans releasing this carbon. For one billion or two billion years, algae in the oceans produced oxygen. But because this gas is highly reactive and because there were many reduced minerals in the ancient oceans–iron, for example, is easily oxidized–much of the oxygen produced by living creatures simply got used up before it could reach the atmosphere, where it would have encountered gases that would react with it.
Even if evolutionary processes had given rise to more complicated life-forms during this anaerobic era, they would have had no oxygen. Furthermore, un ltered ultraviolet sunlight would have likely killed them if they left the ocean. Researchers such as Walker and Preston Cloud, then at the University of California at Santa Barbara, have suggested that only about two billion years ago, after most of the reduced minerals in the sea were oxidized, did atmospheric oxygen accumulate. Between one billion and two billion years ago oxygen reached current levels, creating a niche for evolving life.

By examining the stability of certain minerals, such as iron oxide or uranium oxide, Holland has shown that the oxygen content of the Archean atmosphere was low before two billion years ago. It is largely agreed that the present-day oxygen content of 20 percent is the result of photosynthetic activity. Still, the question is whether the oxygen content in the atmosphere increased gradually over time or suddenly. Recent studies indicate that the increase of oxygen started abruptly between 2.1 billion and 2.03 billion years ago and that the present situation was reached 1.5 billion years ago.

The presence of oxygen in the atmosphere had another major bene t for an organism trying to live at or above the surface: it ltered ultraviolet radiation. Ultraviolet radiation breaks down many molecules–from DNA and oxygen to the chlorouorocarbons that are implicated in stratospheric ozone depletion. Such energy splits oxygen into the highly unstable atomic form O, which can combine back into O2 and into the very special molecule O3, or ozone. Ozone, in turn, absorbs ultraviolet radiation. It was not until oxygen was abundant enough in the atmosphere to allow the formation of ozone that life even had a chance to get a root-hold or a foothold on land. It is not a coincidence that the rapid evolution of life from prokaryotes (single-celled organisms with no nucleus) to eukaryotes (single-celled organisms with a nucleus) to metazoa (multicelled organisms) took place in the billion-year-long era of oxygen and ozone.

Although the atmosphere was reaching a fairly stable level of oxygen during this period, the climate was hardly uniform. There were long stages of relative warmth or coolness during the transition to modern geologic time. The composition of fossil plankton shells that lived near the ocean oor provides a measure of bottom water temperatures. The record suggests that over the past 100 million years bottom waters cooled by nearly 15 degrees Celsius. Sea levels dropped by hundreds of meters, and continents drifted apart. Inland seas mostly disappeared, and the climate cooled an average of 10 to 15 degrees C. Roughly 20 million years ago permanent ice appears to have built up on Antarctica.

About two million to three million years ago the paleoclimatic record starts to show signi cant expansions and contractions of warm and cold periods in 40,000-year or so cycles. This periodicity is interesting because it corresponds to the time it takes Earth to complete an oscillation of the tilt of its axis of rotation. It has long been speculated, and recently calculated, that known changes in orbital geometry could alter the amount of sunlight coming in between winter and summer by about 10 percent or so and could be responsible for initiating or ending ice ages.

The warm hand of man

MOST INTERESTING and perplexing is the discovery that between 600,000 and 800,000 years ago the dominant cycle switched from 40,000-year periods to 100,000-year intervals with very large uctuations. The last major phase of glaciation ended about 10,000 years ago. At its height 20,000 years ago, ice sheets about two kilometers thick covered much of northern Europe and North America. Glaciers expanded in high plateaus and mountains throughout the world. Enough ice was locked up on land to cause sea levels to drop more than 100 meters below where they are today. Massive ice sheets scoured the land and revamped the ecological face of Earth, which was ve degrees C cooler on average than it is currently.

The precise causes of the longer intervals between warm and cold periods are not yet sorted out. Volcanic eruptions may have played a signi cant role, as shown by the effect of El Chichón in Mexico and Mount Pinatubo in the Philippines. Tectonic events, such as the development of the Himalayas, may have inuenced world climate. Even the impact of comets can inuence short-term climatic trends with catastrophic consequences for life [see “What Caused the Mass Extinction? An Extraterrestrial Impact,” by Walter Alvarez and Frank Asaro; and “What Caused the Mass Extinction? A Volcanic Eruption,” by Vincent E. Courtillot; Scientific American, October 1990]. It is remarkable that despite violent, episodic perturbations, the climate has been buffered enough to sustain life for 3.5 billion years.

One of the most pivotal climatic discoveries of the past 30 years has come from ice cores in Greenland and Antarctica. When snow falls on these frozen continents, the air between the snow grains is trapped as bubbles. The snow is gradually compressed into ice, along with its captured gases. Some of these records can go back more than 500,000 years; scientists can analyze the chemical content of ice and bubbles from sections of ice that lie as deep as 3,600 meters (2.2 miles) below the surface.

The ice-core borers have determined that the air breathed by ancient Egyptians and Anasazi Indians was very similar to that which we inhale today–except for a host of air pollutants introduced over the past 100 or 200 years. Principal among these added gases, or pollutants, are extra carbon dioxide and methane. Since about 1860–the expansion of the Industrial Revolution–carbon dioxide levels in the atmosphere have increased more than 30 percent as a result of industrialization and deforestation; methane levels have more than doubled because of agriculture, land use and energy production. The ability of increased amounts of these gases to trap heat is what drives concerns about climate change in the 21st century [see “The Changing Climate,” by Stephen H. Schneider; Scientific American, September 1989].

The ice cores have shown that sustained natural rates of worldwide temperature change are typically about one degree C per millennium. These shifts are still signi cant enough to have radically altered where species live and to have potentially contributed to the extinction of such charismatic megafauna as mammoths and saber-toothed tigers. But a most extraordinary story from the ice cores is not the relative stability of the climate during the past 10,000 years. It appears that during the height of the last ice age 20,000 years ago there was 50 percent less carbon dioxide and less than half as much methane in the air than there has been during our epoch, the Holocene. This nding suggests a positive feedback between carbon dioxide, methane and climatic change.

The reasoning that supports the idea of this destabilizing feedback system goes as follows. When the world was colder, there was less concentration of greenhouse gases, and so less heat was trapped. As Earth warmed up, carbon dioxide and methane levels increased, accelerating the warming. If life had a hand in this story, it would have been to drive, rather than to oppose, climatic change. It appears increasingly likely that when humans became part of this cycle, they, too, helped to accelerate warming. Such warming has been especially pronounced since the mid-1800s because of greenhouse gas emissions from industrialization, land-use change and other phenomena. Once again, though, uncertainties remain.

Nevertheless, most scientists would agree that life could well be the principal factor in the positive feedback between climatic change and greenhouse gases. There was a rapid rise in average global surface temperature at the end of the 20th century [see illustration on opposite page]. Indeed, the period from the 1980s onward has been the warmest of the past 2,000 years. Nineteen of the 20 warmest years on record have occurred since 1980, and the 12 warmest have all occurred since 1990. The all-time record high year was 1998, and 2002 and 2003 were in second and third places, respectively. There is good reason to believe that the decade of the 1990s would have been even hotter had not Mount Pinatubo erupted: this volcano put enough dust into the high atmosphere to block some incident sunlight, causing global cooling of a few tenths of a degree for several years.

Could the warming of the past 140 years have occurred naturally? With ever increasing certainty, the answer is no.

The box at the right shows a remarkable study that attempted to push back the Northern Hemisphere’s temperature record a full 1,000 years. Climatologist Michael Mann of the University of Virginia and his colleagues performed a complex statistical analysis involving some 112 different factors related to temperature, including tree rings, the extent of mountain glaciers, changes in coral reefs, sunspot activity and volcanism.

The resulting temperature record is a reconstruction of what might have been obtained had thermometer-based measurements been available. (Actual temperature measurements are used for the years after 1860.) As shown by the confidence range, there is considerable uncertainty in each year of this 1,000-year temperature reconstruction. But the overall trend is clear: a gradual temperature decrease over the first 900 years, followed by a sharp temperature upturn in the 20th century. This graph suggests that the decade of the 1990s was not only the warmest of the century but of the entire past millennium.

By studying the transition from the high carbon dioxide, low-oxygen atmosphere of the Archean to the era of great evolutionary progress about half a billion years ago, it becomes clear that life may have been a factor in the stabilization of climate. In another example–during the ice ages and interglacial cycles–life seems to have the opposite function: accelerating the change rather than diminishing it. This observation has led one of us (Schneider) to contend that climate and life coevolved rather than life serving solely as a negative feedback on climate.

If we humans consider ourselves part of life–that is, part of the natural system–then it could be argued that our collective impact on Earth means we may have a signi cant co-evolutionary role in the future of the planet. The current trends of population growth, the demands for increased standards of living and the use of technology and organizations to attain these growth-oriented goals all contribute to pollution. When the price of polluting is low and the atmosphere is used as a free sewer, carbon dioxide, methane, chlorouorocarbons, nitrous oxides, sulfur oxides and other toxics can build up.

Drastic changes ahead

IN THEIR REPORT Climate Change 2001, climate experts on the Intergovernmental Panel on Climate Change estimated that the world will warm between 1.4 and 5.8 degrees C by 2100. The mild end of that range–a warming rate of 1.4 degrees C per 100 years–is still 14 times faster than the one degree C per 1,000 years that historically has been the average rate of natural change on a global scale. Should the higher end of the range occur, then we could see rates of climatic change nearly 60 times faster than natural average conditions, which could lead to changes that many would consider dangerous. Change at this rate would almost certainly force many species to attempt to move their ranges, just as they did from the ice age/interglacial transition between 10,000 and 15,000 years ago. Not only would species have to respond to climatic change at rates 14 to 60 times faster, but few would have undisturbed, open migration routes as they did at the end of the ice age and the onset of the interglacial era. The negative effects of this significant warming–on health, agriculture, coastal geography and heritage sites, to name a few–could also be severe.

To make the critical projections of future climatic change needed to understand the fate of ecosystems on Earth, we must dig through land, sea and ice to learn as much from geologic, paleoclimatic and paleoecological records as we can. These records provide the backdrop against which to calibrate the crude instruments we must use to peer into a shadowy environmental future, a future increasingly inuenced by us.


CLAUDE J. ALLGRE and STEPHEN H. SCHNEIDER study various aspects of Earths geologic history and its climate. Allgre is professor at the University of Paris and directs the department of geochemistry at the Paris Geophysical Institute. He is a foreign member of the National Academy of Sciences. Schneider is professor in the department of biological sciences at Stanford University and co-director of the Center for Environmental Science and Policy. He was honored with a MacArthur Prize Fellowship in 1992 and was elected to membership in the National Academy of Sciences in 2002.

This article was originally published with the title “Evolution of Earth” on (2005)


Saturday, November 19, 2016

Fossils are evidence of ancient life forms or ancient habitats which have been preserved by natural processes. They can be the actual remains of a once living thing, such as bones or seeds, or even traces of past events such as dinosaur footprints, or the ripple marks on a prehistoric shore. Geologists can tell the age of a fossil through a variety of radiometric dating techniques. The breakdown of radioactive isotopes of certain elements, such as carbon, uranium and potassium takes place at a known rate, so the age of a rock or mineral containing these isotopes can be calculated.

Diplodocus (left) lived during the Upper Jurassic period 159 to 144 million years ago. Triceratops lived during the Upper Cretaceous period 98-65 million years ago.


History of paleontology

People have been fascinated by fossils for thousands of years, and as long ago as ancient Greek times were correctly interpreting them as the remains of long dead creatures. Palaeontology began to be formalised and treated with scientific rigour from the 17th century onwards. At this time, people started to calculate the age of the Earth and get to grips with the fact that the extinction of a whole species was not only possible, but had occurred many times already. The publication of Darwin’s ‘On the Origin of Species’ in the mid-19th century gave new impetus to palaeontology, as patterns and trends in evolution and extinction were eagerly sought and studied. Modern palaeontologists have an array of tools and processes at their fingertips, from sophisticated dating techniques to electron microscopes and medical scanners.

Fossil types

Body fossils are the preserved remains of the actual body parts of an animal or plant such as a skeleton or a pollen grain. Trace fossils are the remains of ancient activity, such as the burrow left by a worm or a stone tool made by a prehistoric person. Some fossils preserve original features in exquisite detail, while others are much cruder remnants.

How fossils are formed

Fossilization only happens in the rarest of cases, when a plant or animal dies in the right circumstances. Animal corpses are usually eaten by something, or bacteria rots them away before fossilization can occur, and even hard parts like bones and shells are eventually destroyed through erosion and corrosion. The trick to becoming a fossil is to die in a location where your body – or bits of it – are protected from scavengers and the elements. This means getting buried in sand, soil or mud and the best place for that is on the seabed or a river bed.

Only in very rare cases do the soft parts of animals – the flesh, skin and internal organs – become fossils. Even when buried under mud or soil, decay still takes place, though lack of oxygen does slow it down. If a skeleton is dug up at this stage, it will still be made of bone. Remains like these that haven’t truly fossilized yet are sometimes called ‘sub-fossils’.

As more time passes, sub-fossils become buried deeper and deeper. What was mud or sand becomes compressed on its way to becoming rock. But even safely sealed away underground, time doesn’t stand still. Chemicals and minerals percolate through the sediment and the original bone or shell gradually recrystallizes. In extreme cases, the entire thing can dissolve away, leaving a hollow where it once was. If paleontologists find a hollow like this, they can pour liquid rubber in to make a fossil cast, or put it in a medical scanner to see what the original looked like.

In other cases, minerals from the rocks gradually impregnate the bone, shell or wood, changing its chemical composition and making it capable of surviving for as long as – or sometimes longer than – the rock enclosing it. In cases where the original has dissolved away, the minerals can gradually fill the hollow to create a natural cast of the original. So sometimes a fossil doesn’t contain anything of the original creature except its shape. Even that shape can take a battering! If the rocks are distorted and squeezed by geological forces, then the fossils within them will be too.

Even rocks have a finite lifespan. Eventually the rock enclosing a fossil is eroded away, and the fossil is revealed on the surface of the ground. With luck, a sharp-eyed fossil collector will spot and excavate it. Otherwise the elements will continue to batter it, until it – along with the rocks around it – is reduced once more to sand, silt or mud.



Source: BBC/Nature

Impact Events

Saturday, November 19, 2016

Impact events, proposed as causes of mass extinction, are when the planet is struck by a comet or meteor large enough to create a huge shock wave felt around the globe. Widespread dust and debris rain down, disrupting the climate and causing extinction on a global, rather than local, scale. The demise of the dinosaurs at the end of the Cretaceous has been linked to an impact that left a crater in the seabed off the Yucatan peninsula of Mexico. Impacts have also been blamed for other mass extinctions, but the timing and links between cause and effect for these is still debated by scientists.

Asteroid impact. Illustration of a large asteroid colliding with Earth on the Yucatan Peninsula in Mexico. This impact is believed to have led to the death of the dinosaurs some 65 million years ago. The impact formed the Chicxulub crater, which is around 200 kilometres wide. The impact would have thrown trillions of tons of dust into the atmosphere, cooling the Earth’s climate significantly, which may have been responsible for the mass extinction. A layer of iridium- rich rock, known as the K/T boundary, is thought to be the remnants of the impact debris.


Chicxulub crater

The Chicxulub crater is an impact crater buried underneath the Yucatán Peninsula in Mexico. Its center is located near the town of Chicxulub, after which the crater is named. It was formed by a large asteroid or comet at least 10 kilometres (6 miles) in diameter, the Chicxulub impactor, striking the Earth. The date of the impact coincides precisely with the Cretaceous–Paleogene boundary (K–Pg boundary), around 66 million years ago, and a widely accepted theory is that worldwide climate disruption from the event was the cause of the Cretaceous–Paleogene extinction event, a mass extinction in which 75% of plant and animal species on Earth suddenly became extinct, including the dinosaurs. The crater is more than 180 kilometers (110 miles) in diameter and 20 km (12 mi) in depth, well into the continental crust of the region of about 10–30 km depth. It makes the feature the third of the largest confirmed impact structures on Earth.

Location of Chicxulub crater, Mexico


The crater was discovered by Antonio Camargo and Glen Penfield, geophysicists who had been looking for petroleum in the Yucatán during the late 1970s. Penfield was initially unable to obtain evidence that the geological feature was a crater and gave up his search. Later, through contact with Alan Hildebrand in 1990, Penfield obtained samples that suggested it was an impact feature. Evidence for the impact origin of the crater includes shocked quartz, a gravity anomaly, and tektites in surrounding areas.

Imaging from NASA’s Shuttle Radar Topography Mission STS-99 reveals part of the 180 km (110 mi) diameter ring of the crater. The numerous sinkholes clustered around the trough of the crater suggest a prehistoric oceanic basin in the depression left by the impact.



Monday, November 14, 2016

Mounted skeleton (NCSM 14345) at the North Carolina Museum of Natural Sciences.

Acrocanthosaurus meaning “high-spined lizard”) is a genus of theropod dinosaur that existed in what is now North America during the Aptian and early Albian stages of the Early Cretaceous. Like most dinosaur genera, Acrocanthosaurus contains only a single species, A. atokensis. Its fossil remains are found mainly in the U.S. states of Oklahoma, Texas, and Wyoming, although teeth attributed to Acrocanthosaurus have been found as far east as Maryland.

Acrocanthosaurus was a bipedal predator. As the name suggests, it is best known for the high neural spines on many of its vertebrae, which most likely supported a ridge of muscle over the animal’s neck, back and hips. Acrocanthosaurus was one of the largest theropods, reaching 11.5 m (38 ft) in length, and weighing up to 6.2 tonnes (6.8 short tons). Large theropod footprints discovered in Texas may have been made by Acrocanthosaurus, although there is no direct association with skeletal remains.

Recent discoveries have elucidated many details of its anatomy, allowing for specialized studies focusing on its brain structure and forelimb function. Acrocanthosaurus was the largest theropod in its ecosystem and likely an apex predator which preyed on sauropods, ornithopods, and ankylosaurs.

Acrocanthosaurus was big for its time,‭ ‬a family trait that is shared with‭ ‬some other carcharodontosaurids such as Carcharodontosaurus and Giganotosaurus.‭ ‬At‭ ‬eleven and a half‭ ‬meters,‭ ‬Acrocanthosaurus would have been the largest predator of its time and locale.‭ ‬Its diet as a result probably consisted of hadrosaurs and smaller sauropods,‭ ‬dinosaurs that were large enough to provide sufficient sustenance,‭ ‬while being too slow to escape.‭ ‬Study of the area that the main Acrocanthosaurusremains come from suggest that it was probably the apex predator of its location,‭ ‬with most other predators such as Deinonychus being much smaller.

The skull of Acrocanthosaurus featured large fenestra,‭ ‬a necessary adaptation to reduce the weight of its huge skull that could approach up to a‭ ‬one hundred and thirty‭ centi‬meters long.‭ ‬The teeth of Acrocanthosaurus were curved and serrated like other members of the carcharodontosaurid group.‭ ‬The maxilla and premaxilla contained‭ ‬a total of around thirty-eight teeth.‭ ‬The teeth in the lower jaw are generally smaller than those above and can approach up to thirty in number.‭ ‬Another carcharodontosaurid trait is the bony brow ridge above the eye,‭ ‬formed by the lacrimal and postorbital bones coming together.

Artist's impression of a pair of Acrocanthosaurs on the move.

Computer reconstruction of the inner ear has shown that the‭ ‘‬resting position‭’ ‬of the head of Acrocanthosaurus was twenty-five degrees below zero horizontal.‭ ‬This may give the impression that Acrocanthosaurus usually walked around looking slightly towards the ground.

Reconstruction of an Acrocanthosaurus forelimb suggests that there would have been large amounts of cartilage between the bones.‭ ‬This comes from the fact that bones themselves do not make perfect joints and would need the extra cartilage in order to articulate properly.‭ ‬The arms of Acrocanthosaurus did not have a huge range of motions.‭ ‬The arm could not fully extend and could only manage limited flexing.‭ ‬The humerus could retract back quite away,‭ ‬as if Acrocanthosaurus was pulling something towards its chest.‭ ‬As is commonly seen in larger theropods,‭ ‬the fore arm could not twist like a human arm can.‭ ‬When at rest the arms would have faced medially inwards,‭ ‬like when you clap your hands together.‭ ‬Acrocanthosaurus had three digits on the end of its arms with the first and second claws probably being permanently flexed.‭ ‬The third and smallest claw may have been able to retract as well.

Altogether,‭ ‬Acrocanthosaurus may have grabbed large prey such as sauropods like Paluxysaurus with its jaws and then latched onto it with its claws. ‭The neck vertebrae also interlocked together for greater rigidity which means that Acrocanthosauruscould hold onto large prey with its jaws without sustaining injury to the neck. ‬Lighter prey such as ornithopod dinosaurs like Tenontosaurus may have been pulled towards Acrocanthosaurus while it continued to work with its jaws,‭ ‬whereas it would probably have to pull itself onto heavier prey.‭ ‬Alternatively it may have held its prey with its jaws while repeatedly slashing at it with its claws,‭ ‬the more the prey struggled,‭ ‬the worse its wounds became.

One usual feature of Acrocanthosaurus is the large neural spines on the vertebrae of the neck, back, hips and upper tail. It is not thought that it had a sail on its back like Spinosaurus (which was unrelated, and had much larger neural spines), but rather it is thought the spines had attachments for powerful muscles, similar to those found in modern bison. Its not entirely clear what the purpose of these spines and muscles were – possibilities include fat storage, communication, or temperature regulation.

Acrocanthosaurus was a carnivore, but is not believed to have been a fast runner. Its forelimbs and shoulders are also unusual, and seem to have been very strong, had lots of cartilage, but been quite stiff with very limited movement. It is thought that the forelimbs hung down and inwards, and would not have been used for seizing prey. Acrocanthosaurus may instead have seized prey with its jaws, and used its forelimbs to prevent the prey escaping. It is also possible that Acrocanthosaurus may have held the prey in its jaws, and used the claws in its forelimbs to tear gashes into the prey.

Phorusrhacidae aka Terror Birds

Saturday, November 19, 2016
Phorusrhacids, colloquially known as terror birds, are a clade of large carnivorous flightless birds that were the largest species of apex predators in South America during the Cenozoic era; their temporal range covers from 62 to 1.8 million years (Ma) ago.
They ranged in height from 1–3 metres (3.3–9.8 ft) tall. Their closest modern-day relatives are believed to be the 80 cm-tall seriemas. Titanis walleri, one of the larger species, is also known in North America from Texas and Florida. This makes the phorusrhacids the only known large South American predator to migrate north during the Great American Interchange, which commenced after the Isthmus of Panama land bridge rose about 10 to 15 Ma.
It was once believed that T. walleri became extinct in North America around the time of the arrival of humans, but subsequent datings of Titanis fossils provided no evidence for their survival after 1.8 Ma. Still, reports from Uruguay of new findings dating to 450,000 and 17,000 years ago, would imply that some phorusrhacids survived there until very recently (i.e., until the late Pleistocene); but this claim is debated.
Terror Bird Skull
Phorusrhacids may have even made their way into Africa; the genus Lavocatavis was recently discovered in Algeria, but its status as a true phorusrhacid is questioned. A possible European form, Eleutherornis, has also been identified, suggesting that this group had a wider geographical range in the Paleogene.
The closely related bathornithids occupied a similar ecological niche in North America across the Eocene to Miocene; some, like Paracrax, reached similar sizes to the largest phorusrhacids. At least one analysis recovers Bathornis as sister taxa to phorusrhacids, on the basis of shared features in the jaws and coracoid, though this has been seriously contested, as these might have evolved independently for the same carnivorous, flightless lifestyle.