Tyrannosauroidea

Tyrannosauroidea (meaning ‘tyrant lizard forms’) is a superfamily (or clade) of coelurosaurian theropod dinosaurs that includes the family Tyrannosauridae as well as more basal relatives. Tyrannosauroids lived on the Laurasian supercontinent beginning in the Jurassic Period. By the end of the Cretaceous Period, tyrannosauroids were the dominant large predators in the Northern Hemisphere, culminating in the gigantic Tyrannosaurus itself. Fossils of tyrannosauroids have been recovered on what are now the continents of North America, Europe, Asia, South America and Australia.

Family: Tyrannosauridae. Dinosauria, Saurischia, Theropoda, Tyrannosauroidea. Author: Oktaytanhu, 2015.

Tyrannosauroids were bipedal carnivores, as were most theropods, and were characterized by numerous skeletal features, especially of the skull and pelvis. Early in their existence, tyrannosauroids were small predators with long, three-fingered forelimbs. Late Cretaceous genera became much larger, including some of the largest land-based predators ever to exist, but most of these later genera had proportionately small forelimbs with only two digits. Primitive feathers have been identified in fossils of two species, and may have been present in other tyrannosauroids as well. Prominent bony crests in a variety of shapes and sizes on the skulls of many tyrannosauroids may have served display functions.

Tyrannosauroids varied widely in size, although there was a general trend towards increasing size over time. Early tyrannosauroids were small animals. One specimen of Dilong, almost fully grown, measured 1.6 meters (5.3 ft) in length, and a fully-grown Guanlong measured 3 meters (10 ft long). Teeth from lower Lower Cretaceous rocks (140 to 136 million years old) of Hyogo, Japan, appear to have come from an approximately 5 metres (16 ft) long animal, possibly indicating an early size increase in the lineage. An immature Eotyrannus was over 4 meters (13 ft) in length, and a subadult Appalachiosaurus was estimated at more than 6 meters (20 ft) long, indicating that both genera reached larger sizes. The Late Cretaceous tyrannosaurids ranged from the 9 meter (30 ft) Albertosaurus and Gorgosaurus to Tyrannosaurus, which exceeded 12 meters (39 ft) in length and may have weighed more than 6400 kilograms (7 short tons). A 2010 review of the literature concluded that tyrannosaurs were “small- to mid-sized” for their first 80 million years but were “some of the largest terrestrial carnivores to ever live” in their last 20 million years.

Replica Yutyrannus huali skeletons mounted in a fighting pose inspired by Charles R. Knight’s painting of Laelaps. Dino-Kingdom 2012, Tokyo, Japan. Author: Laika ac

Skulls of early tyrannosauroids were long, low and lightly constructed, similar to other coelurosaurs, while later forms had taller and more massive skulls. Despite the differences in form, certain skull features are found in all known tyrannosauroids. The premaxillary bone is very tall, blunting the front of the snout, a feature which evolved convergently in abelisaurids. The nasal bones are characteristically fused together, arched slightly upwards and often very roughly textured on their upper surface. The premaxillary teeth at the front of the upper jaw are shaped differently from the rest of the teeth, smaller in size and with a D-shaped cross section. In the lower jaw, a prominent ridge on the surangular bone extends sideways from just below the jaw joint, except in the basal Guanlong.

Tyrannosauroids had S-shaped necks and long tails, as did most other theropods. Early genera had long forelimbs, about 60% the length of the hindlimb in Guanlong, with the typical three digits of coelurosaurs. The long forelimb persisted at least through the Early Cretaceous Eotyrannus, but is unknown in Appalachiosaurus. Derived tyrannosaurids have forelimbs strongly reduced in size, the most extreme example being Tarbosaurus from Mongolia, where the humerus was only one-quarter the length of the femur. The third digit of the forelimb was also reduced over time. This digit was unreduced in the basal Guanlong, while in Dilong it was more slender than the other two digits. Eotyrannus also had three functional digits on each hand. Tyrannosaurids had only two, although the vestigial metacarpal of the third are preserved in some well-preserved specimens. As in most coelurosaurs, the second digit of the hand is the largest, even when the third digit is not present.

A simplified cladogram showing the systematic position of Y. huali among the Tyrannosauroidea.
From: A gigantic feathered dinosaur from the Lower Cretaceous of China
Xing Xu, Kebai Wang, Ke Zhang, Qingyu Ma, Lida Xing, Corwin Sullivan, Dongyu Hu, Shuqing Cheng & Shuo Wang- Nature 484, 92–95 (05 April 2012)

 

Tyrannosaurus was named by Henry Fairfield Osborn in 1905, along with the family Tyrannosauridae. The name is derived from the Ancient Greek words τυραννος/tyrannos (‘tyrant’) and σαυρος/sauros (‘lizard’). The superfamily name Tyrannosauroidea was first published in a 1964 paper by the British paleontologist Alick Walker. The suffix -oidea, commonly used in the name of animal superfamilies, is derived from the Greek ειδος/eidos (‘form’).

Scientists have commonly understood Tyrannosauroidea to include the tyrannosaurids and their immediate ancestors. With the advent of phylogenetic taxonomy in vertebrate paleontology, however, the clade has received several more explicit definitions. The first was by Paul Sereno in 1998, where Tyrannosauroidea was defined as a stem-based taxon including all species sharing a more recent common ancestor with Tyrannosaurus rex than with neornithean birds. To make the family more exclusive, Thomas Holtz redefined it in 2004 to include all species more closely related to Tyrannosaurus rex than to Ornithomimus velox, Deinonychus antirrhopus or Allosaurus fragilis. Sereno published a new definition in 2005, using Ornithomimus edmontonicus, Velociraptor mongoliensis and Troodon formosus as external specifiers. The Sereno definition was adopted in a 2010 review.

Skull and neck of Daspletosaurus, from the Field Museum of Natural History in Chicago.

The most basal tyrannosauroid known from complete skeletal remains is Guanlong. Other early taxa include Stokesosaurus and Aviatyrannis, known from far less complete material. The better-known Dilong is considered slightly more derived than Guanlong and Stokesosaurus.

The tyrannosauroids lived on the supercontinent Laurasia, which split from Gondwana in the Middle Jurassic, as well as on the northern continents, which separated from Laurasia later in the Mesozoic era. The earliest recognized tyrannosauroids lived in the Middle-Late Jurassic, including Guanlong and Kileskus from the Far East, Stokesosaurus from the western United States and Aviatyrannis, Juratyrant, and Proceratosaurus from Europe.

Map of tyrannosauroid fossil localities as of December 2007. I used the blank political map of the world commonly used on Wikipedia ((BlankMap-World.png). Keep in mind that the land masses would not have been in the same places they are today in the Jurassic and Cretaceous periods. Author: Sheep81

Early Cretaceous tyrannosauroids are known from Laurasia, being represented by Eotyrannus from England and Dilong, Sinotyrannus, and Yutyrannus from northeastern China. Early Cretaceous tyrannosauroid premaxillary teeth are known from the Cedar Mountain Formation in Utah and the Tetori Group of Japan.

Basal tyrannosauroids may have also been present in what is now southeastern Australia during the Aptian of the Early Cretaceous. NMV P186069, a partial pubis (a hip bone) with a distinctive tyrannosauroid-like form, was discovered in Dinosaur Cove in Victoria, indicating that tyrannosauroids were not limited to the northern continents as previously thought.

Feathers

Long filamentous structures have been preserved along with skeletal remains of numerous coelurosaurs from the Early Cretaceous Yixian Formation and other nearby geological formations from Liaoning, China. These filaments have usually been interpreted as “protofeathers,” homologous with the branched feathers found in birds and some non-avian theropods, although other hypotheses have been proposed. A skeleton of Dilong was described in 2004 that included the first example of feathers in a tyrannosauroid. Similarly to down feathers of modern birds, the feathers found in Dilong were branched but not pennaceous, and may have been used for insulation. Even large tyrannosauroids have been found with evidence of feathers. Yutyrannus huali, also from the Yixian Formation, is known from three specimens, each preserving traces of feathers on various parts of the body. While not all areas of the body preserve impressions across all three specimens, these fossils demonstrate that even in this medium-sized species, most of the body was covered in feathers.

The presence of feathers in basal tyrannosauroids is not surprising, since they are now known to be characteristic of coelurosaurs, found in other basal genera like Sinosauropteryx, as well as all more derived groups. Rare fossilized skin impressions of some Late Cretaceous tyrannosaurids lack feathers, however, instead showing skin covered in fine, non-overlapping scales. It is possible that feathers were present on areas of the body not preserved with skin impressions (which are very small and come primarily from the legs, pelvic region and underside of the tail).

Source: NatGeo.com, metalfloss.com, ifls.com

Leave a Reply

Your email address will not be published. Required fields are marked *


CAPTCHA Image
Play CAPTCHA Audio
[ Different Image ]